

Capturing Mixtures:

Bringing Informatics to the World of Practical Chemistry

Moderated by: Samantha Jeschonek, PhD of **CDD**

Expert Panelists:

Leah McEwen, MS, MLS of **Cornell University** Chris Jakober, PhD of **John Hopkins University**

Alex Clark, PhD of CDD

December 19, 2019

Smart Software Saves Time

- Complete, intuitive solution for R&D data
 - Deployed and trained in 90 min
 - Activity & Registration, ELN, Visualization, Inventory
- Fully hosted, always available
 - Nothing to install or support
 - All devices, OS's, browsers, locations
- Collaboration-ready
 - Configurable access for partners & CROs
- Ecosystem compatible
 - Uses common file formats & RESTful API
 - ChemAxon cartridge, full stereochem
- Time-tested performance, security
 - Deployed since 2004
- Most affordable solution on the market
 - Single annual fee
 - No services or upgrade costs

Antest	Name of Concession of Concessi	Daniel Papelles Romanie angel grant 1	Belan Pa	Edward Investory 1	Dep Fig. 1	Ang interface (by)	And the local diversity of	Boundary CR	Intege Fig. 1	Door-response Full
~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90.90		QAR IS CT		45x17/H	138 + 234 (147)	1.01		his constraints
	COLUMN TAXA							1.07		
2	na financia na financia Na financia		-	Que total	J.	1.12.4.00 (41)	10010			
2		36.60		Gan 15-118	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28+18/H	2.01 + 1.00 (101))	148		Figure 1 des
2		30.Ni	-	Gan to Pill		SEASE/N	2014 Latignedi	0.346		Jan Stranger

Today's Moderator and Panelists

Samantha Jeschonek, PhD Research Scientist Collaborative Drug Discovery

Leah McEwen, MS, MLS Chemistry Librarian Cornell University

Chris Jakober, PhD Graduate Instructor Johns Hopkins University, Whiting School of Engineering

Alex Clark, PhD Research Scientist Collaborative Drug Discovery

Area of Focus: IUPAC & Mixtures Area of Focus: Safety & Mixtures Area of Focus: AI & Mixtures

We'll be sure to save time for them later!

Today's Moderator and Panelists

Samantha Jeschonek, PhD Research Scientist Collaborative Drug Discovery

Leah McEwen, MS, MLS Chemistry Librarian Cornell University

Chris Jakober, PhD Graduate Instructor Johns Hopkins University, Whiting School of Engineering

Alex Clark, PhD Research Scientist Collaborative Drug Discovery

Area of Focus: IUPAC & Mixtures Area of Focus: Safety & Mixtures Area of Focus: AI & Mixtures

MInChl Project Team

- Gerd Blanke, StructurePendium Technologies GmbH, DEU
- Alex Clark, Collaborative Drug Discovery, CAN
- John Duffus, Edinburgh Centre for Toxicology, GBR
- Richard Hartshorn, University of Canterbury, NZL
- Chris Jakober, University of California, USA
- Jon LaRue, MilliporeSigma, USA
- Leah McEwen, Cornell University, USA, Chair
- Andrey Yerin, ACD/Labs, RUS

Mixture representation today...

Phenol:Chloroform:Isoamyl Alcohol 25:24:1 Saturated with 10 mM Tris, pH 8.0, 1 mM EDTA

	n-Paraffins
0.5 μ g/mL B ₂ and G ₂ in acetonitrile	Isoparaffir
	Aromatics
$2 \ \mu g/mL B_1$ and G_1 in acetonitrile	Naphthen
	Olefine 10

Description
n-Paraffins 18.9 % (w/w)
Isoparaffins 18.8 % (w/w)
Aromatics 23.3 % (w/w)
Naphthenes 20.5 % (w/w)
Olefins 18.5 % (w/w)

(each component in approx proportion indicated)

Butane, 15 % (w/w)
Heptane, 15 % (w/w)
Hexane, 15 % (w/w)
Nonane, 15 % (w/w)

Octane, 15 % (w/w) Pentane, 15 % (w/w) Propane, 10 % (w/w)

Ingredient	Wt. %
Phase A	
1. Lauryl PEG/PPG-18/18 Methicone	2
2. Aminopropyl Phenyl Trimethicone	2
3. Jojoba Oil	1.25
4. Isohexadecane	11.25
Phase B	
5. Glycerin	3
6. Phenoxyethanol and Methylisothiazolinone	0.5
7. Water	80

(equal weights of the hydrocarbons listed)	
Heptadecane	Pentadecane
Hexadecane	Tetradecane

Real World Mixtures: Consumer View

mica CASRN 12001-26-2

flavor

Mixtures Representation

1 M lithium diisopropyl amide in THF/hexanes (1:8)

Multi-Component System Notation

1.7M t-Butyllithium in Pentane:

```
MInChI=0.00.0S/
C4H9.Li/c1-4(2)3;/h1-3H3;/q-1;+1
&
```

```
C5H12/c1-3-5-4-2/h3-5H2,1-2H3&
/n{1&2}
/g{17mr-1&}
```

37% wt. Formaldehyde in Water with 10-15% Methanol:

MInChI=0.00.0S/ CH2O/c1-2/h1H2& CH4O/c1-2/h2H,1H3& H2O/h1H2 /n{1&2&3} /g{37wf-2&10-15vf-2&}

- alphabetical order of components
- "&" separates components
- "{}" mixture groups (e.g., nested)
- "/n" indexes components (e.g., order)
- "/g" concentration (symbols detailed separately)

1.0 M lithium diisopropyl amide in THF/hexanes : MInChI=0.00.0S/ C4H8O/c1-2-4-5-3-1/h1-4H2& C6H12/c1-6-4-2-3-5-6/h6H,2-5H2,1H3& C6H14/c1-3-5-6-4-2/h3-6H2,1-2H3& C6H14/c1-4-5-6(2)3/h6H,4-5H2,1-3H3& C6H14/c1-4-6(3)5-2/h6H,4-5H2,1-3H3& C6H14N.Li/c1-5(2)7-6(3)4;/h5-6H,1-4H3;/q-1;+1 /n{6&{1&{2&3&4&5&nc}}} /g{1mr&{1vp&{1-2vf-1&5-7vf-1&1-5vf-2&1-5vf-2&} 7vp}}

Poll the Audience!

How do you currently report mixtures in your industry?

- a) Text based format, only listing the active ingredient details
- b) Text based format that includes active ingredient and primary solvent details
- c) Poorly...usually with someone's initials, date, and reference to a notebook page.
- d) Structured format incorporating public standards (like InChI keys)
- e) We don't since we never considered that inactive ingredients might be useful to capture.

A Typical Research Inventory

-	?

Name	CAS NO	Phase	Bottles	Amount	Unit	
	Butyllithium solution, 2.5M in hexanes	109-72-8	Liquid	1	100	mL
	Butyllithium solution, 2.5M in hexanes	109-72-8	Liquid	2	50	mL
	Butyllithium solution, 2.5M in hexanes	109-72-8	Liquid	4	25	mL
	Butyllithium solution, n-, 2.5M in hexanes	109-72-8	Liquid	1	100	mL
	Butyllithium solution, 1.6 M in hexanes	109-72-8	Solid	1	25	mL
	Butyllithium, (1.6 M in hexanes)	109-72-8	Liquid	1	100	mL
	butyllithium, 0.14 mol/l in toluene	109-72-8	Liquid	1	90	mL
	butyllithium, 0.16 mol/l in Hexane	109-72-8	Liquid	1	140	mL
	butyllithium, 0.16 mol/l in hexane	109-72-8	Liquid	1	40	mL
	butyllithium, 0.16 mol/l in Hexanes	109-72-8	Liquid	1	100	mL
	butyllithium, 0.25 mol/l in Hexane	109-72-8	Liquid	1	50	mL
	butyllithium, 0.25 mol/l in hexane	109-72-8	Liquid	1	80	mL
	butyllithium, 0.25 mol/l in hexanes	109-72-8	Liquid	1	100	mL
	butyllithium, 0.25 mol/l in Hexanes	109-72-8	Liquid	1	30	mL
	butyllithium, 0.25 mol/l in Hexanes	109-72-8	Liquid	1	100	mL
	butyllithium, 0.25 mol/l in hexanes	109-72-8	Liquid	1	100	mL
	butyllithium, 0.25 mol/l in hexanes	109-72-8	Liquid	1	100	mL
	butyllithium, 0.25 mol/l in hexanes	109-72-8	Liquid	1	100	mL
	Butyllithium, 1.3M in cyclohexane/hexane (92/8), sec-	598-30-1	Liquid	1	100	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	100	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	400	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	100	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	2	250	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	100	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	50	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	50	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	100	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	400	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	100	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	100	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	50	mL
	BUTYLLITHIUM, 1.6 M IN HEXANE	BUTYLLITHIUM, 1.6 M IN HEXANE-Mixture	Liquid	1	100	mL

Courtesy of the University of California

- Lots of mixtures, but mostly text
- Active ingredient often separated
 - purity
 - solvent/conc.
- Semi-structured databases also

n-Butyllithium solution

7 Product Results | Match Criteria: Property, Product Name

230707	2.5 M in hexanes	Sigma-Aldrich	SDS Pricing
302120	2.0 M in cyclohexane	Sigma-Aldrich	SDS Pricing
20159	2.7 M in heptane	Sigma-Aldrich	SDS Pricing
230715	11.0 M in hexanes	Sigma-Aldrich	SDS Pricing
186171	1.6 M in hexanes	Sigma-Aldrich	SDS Pricing

tert-Butyllithium

1 Product Result | Match Criteria: Product Name

H ₃ C CH ₃ CH ₃			
8.14147	(approx.15% solution in n-pentane) for synthesis	Sigma-Aldrich	�SDS Pricing 오

tert-Butyllithium solution

1 Product Result | Match Criteria: Keyword

Real World Mixtures: Consumer View

mica CASRN 12001-26-2

flavor

Poll the Audience!

Where would mixtures standards (like MInChI) have the greatest impact on you or your company?

- a) Scientist level being able to unambiguously identify details about a mixture for assays
- b) Informatics level being able to improve models by knowing more about the mixture composition
- c) Inventory level ensuring that duplicate solutions are not purchased
- d) Transport and safety level improving risk management
- e) Regulatory level increasing efficiency in reporting

We'll be sure to save time for them later!

Today's Moderator and Panelists

Samantha Jeschonek, PhD Research Scientist Collaborative Drug Discovery

Leah McEwen, MS, MLS Chemistry Librarian Cornell University

Chris Jakober, PhD Graduate Instructor Johns Hopkins University, Whiting School of Engineering

Alex Clark, PhD Research Scientist Collaborative Drug Discovery

Area of Focus: IUPAC & Mixtures Area of Focus: Safety & Mixtures Area of Focus: AI & Mixtures

Editing Mixture Trees

Editing Components

	Mixtures - mixture7.mixfile		Mixtures - mixture7.mixfile
	Li*		Li ⁺
Edit	Component Sketch Close Save	Edit Compound	Clear Copy Close Save
Name	E Lithium diisopropylamide		
Quant	tity Value Range Ratio = + 1 ± mol/L +		
Descr	ription		$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $
Synor	nyms		
Formu	ula		
InChi	InChI=1S/C6H14N.Li/c1-5(2)7-6(3)4;/h5-6H,1-4H3;/q-1;+1		
InChil	Key InChIKey=ZCSHNCUQKCANBX-UHFFFAOYSA-N		× 0 × 0 × 0
	Calculate from Structure	O S	· · · · · · · · · · · · · · · · · · ·
SMILE	ES	P H	
Identif	ifiers	F CI Br A	
	3-methylpentane 1 - 5 % other isomers		

Extracted Mixtures

Copyright © 2019 All Rights Reserved Collaborative Drug Discovery

Calculating MInChI strings

Today's Moderator and Panelists

Samantha Jeschonek, PhD Research Scientist Collaborative Drug Discovery

Leah McEwen, MS, MLS Chemistry Librarian Cornell University

Chris Jakober, PhD Graduate Instructor Johns Hopkins University, Whiting School of Engineering

Alex Clark, PhD Research Scientist Collaborative Drug Discovery

Area of Focus: IUPAC & Mixtures Area of Focus: Safety & Mixtures Area of Focus: AI & Mixtures

Practical Demonstration of CDD Vault

Hosted by: Robert Thorn, PhD of CDD

Thursday, January 09, 2020

- 12:00 PM EST
- 11:00 AM CST
- 9:00 AM PST

Questions?

<u>Subscribe</u> to the **CDD Blog** to get all up-to-date events including links to webinar content, interviews and all other CDD activities...

https://www.collaborativedrug.com/blog