Artificial Intelligence Drug Discovery — Where are we now?

LIVE
June 22, 2023
8:00AM (PDT), 11:00AM (EDT), 16:00 (BST)

MATTHEW SEGALL, PHD
CEO, Optibrium Ltd

HANJO KIM, PHD
SVP Strategic Planning, Standigm

ALPHA LEE, PHD
Co-founder & CSO, PostEra
Featuring these leading scientists...

Matthew Segall, PhD
CEO · Optibrium Ltd
Matt Segall is the CEO of Optibrium Ltd, which provides integrative, intuitive software for small molecule design, optimisation and data analysis. From advanced artificial intelligence technologies to user-friendly drug design platforms, such as StarDrop™ and Cerella™, all Optibrium products and services are backed up by rigorous scientific research and support scientists in their decision making throughout the drug discovery process. Dr Segall has a Masters of Science in Computation from the University of Oxford and a PhD in Theoretical Physics from the University of Cambridge.

Hanjo Kim, PhD
SVP Strategic Planning · Standigm
Hanjo Kim is a Senior Vice President at Standigm, an AI-driven drug discovery company based in Seoul, Korea. At Standigm, he has held multiple roles, including SVP of Global Strategy, Head of Medicinal Chemistry and Deputy Head of Research. Dr. Kim received a Bachelor of Science in Chemistry, Masters of Science and PhD in Organic Chemistry degrees from Yonsei University in Korea.

Alpha Lee, PhD
Co-founder & CSO · PostEra
Alpha Lee is the Co-founder and Chief Scientific Officer of PostEra, a biotechnology company specializing in machine learning for preclinical drug discovery. The company focuses on using advances in machine learning to close the Design-Make-Test cycle of Medicinal Chemistry. Dr. Lee has a Bachelor of Science in Chemistry from Imperial College London and Masters of Mathematical Modeling and Scientific Computing and PhD degrees from University of Oxford.
Have a question to ask our panel?
Open the ZOOM Q&A and type in your question at anytime!

Saving your Questions to the end
Introduction to Optibrium

A complete package of fully integrated, elegant software for small molecule design, optimisation and data analysis

Enhance your expertise with unique AI solutions to guide more effective drug discovery strategies

To learn more, visit www.optibrium.com or contact us at info@optibrium.com
About PostEra

We are building the world’s best Chemistry AI platform to get more cures to patients

- Founders are scientists trained at Oxford, Cambridge, Harvard and Yale who pioneered the latest advances in AI for Medicinal Chemistry

- $370M deal value in 2022 from Pfizer and the NIH

- Launched COVID Moonshot and achieved zero-to-candidate in 18 months | $10M grant to prepare for Phase I trial

- PostEra is developing its own drug pipeline and establishing a limited set of deep pharma partnerships to complement our overall portfolio
PostEra’s Proton Platform

- *Proton* is PostEra’s end-to-end machine learning platform for medicinal chemistry
- We use *Proton* to develop small molecule drug candidates from zero to DC
- We address key challenges at each stage of the DMT cycle:
 - **DESIGN**: Low-data models to extract chemical signal from noise
 - **MAKE**: Synthesis-driven design for rapid data generation without combi-chem weaknesses
 - **TEST**: Probabilistic modelling to optimally select molecules for assays
Our platform has accelerated programs across a diversity of challenges

- GPCRs, kinases, proteases, and ion channels
- Disease areas: Viral infections, metabolic diseases, oncology, and CNS.
- Covalent peptidomemetic \rightarrow Non-covalent, small molecule
- Majority programs worked on novel biology and/or first-in-class therapeutics
- Pure phenotypic assays
- Fragment-based starting points

From Zero to Preclinical Candidate

- Target to Hit (N=6)
- Hit to Lead (N=4)
- Lead to Development Candidate (N=1)*

*3 structurally differentiated candidates
Standigm (which came from the ‘standard paradigm’) was founded in 2015 by three co-founders with different expertise in AI, systems biology, and chemical engineering.

Our leading technology includes Standigm ASK™ (target ID) and Standigm BEST™ (novel compound design).

We have conducted collaborative projects with more than 20 partners.
AI is not magic!
Generative Chemistry

- Novel Molecule
- Molecules
- Vectors
- Independent Variables
- Desired Property
- Properties
- Dependent Variables
- Prediction
- Data
- Representation
- Prediction Model
How does PostEra DESIGN molecules?

Hit Identification – Fragments to Hits

Crystallographic fragment screen

Identify interaction patterns as a pharmacophore field

Generate hits that fit persistent pharmacophore patterns
How does PostEra MAKE molecules?

- We learn the rules of chemistry using a natural language processing approach.

- Our Molecular Transformer model is state-of-the-art.
- Molecular Transformer is competitive with expert chemists.

- We combine MT with the industry’s largest collection of CRO catalogs enabling efficient retrosynthesis.

<table>
<thead>
<tr>
<th>Vendors</th>
<th>chemspace</th>
<th>emolecules</th>
<th>enamine</th>
<th>enamine EU/US</th>
<th>mcule</th>
<th>molport</th>
<th>sigma</th>
<th>wuxi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79.6%</td>
<td>80.3%</td>
<td>85.6%</td>
<td>90.4%</td>
</tr>
</tbody>
</table>

Schwaller…AAL, ACS Central Science (2019)
Seamless Integration of Data and AI in the Cloud
CDD Vault™ and Cerella™

- Deploys the unique Alchemite™ method for deep learning imputation
 - Proven success in diverse drug discovery applications

- Automatically updates and prepares data from CDD Vault for model building
 - Applies cleaning and business rules to data
 - Transforms data for best model performance

- Updates Alchemite models as new data become available

- Manages ‘massive matrix’ of imputed and experimental results for easy access
 - May contain \(O(10^{10}) \) data points!

- Provides seamless access to results
 - Using StarDrop or any platform via a RESTful API

The Standigm Technology

End-to-End Solution from disease to drug candidates

Real-world Data

Partners

Defined Indication

Patient Data

Market Prediction

Drug Design

ADME/T Prediction

Preclinical Candidates

Accumulated Knowledge & Data

Natural Language Process

Target Prioritizing

Target Decision

Chemical Space

AI/ML for Optimization

Synthesis & Validation

GSM (Genome-scale model)

Standigm ASK™: Novel Target Identification

Standigm BEST™: Novel Compound Design
Case Study: Macrodomain

- SARS-CoV-2 nsp3-mac1 is a viral ADP-ribosyl hydrolase, conserved across coronaviruses, hypothesized to counteract host immune response.

- Potential first-in-class therapeutic. MoA of viral-host immune interactions is distinct to current approved treatments.

- 350x potency gains in 6 months
- 5 FTE chemistry team
- 534 compounds made and tested
Case Study: Macrodomain

Crystallographic fragment screen

- Pharmacophore based hit identification
- One Design-Make-Test cycle
- Catalogue compound

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogD</td>
<td>3</td>
</tr>
<tr>
<td>Mac1 HTRF IC50/μM</td>
<td>0.5</td>
</tr>
<tr>
<td>SARS-CoV-2 HelaACE2 EC50/μM</td>
<td>1.3 (n=2)</td>
</tr>
<tr>
<td>MDCK-MDR1 Papp (A->B)/(10^-6 cm/s)</td>
<td>4.2</td>
</tr>
<tr>
<td>Kinetic solubility/μM</td>
<td>17</td>
</tr>
</tbody>
</table>

Series screened against Eurofins kinase panel to derisk off-target due to “hinge-binder” motif
Experimental Validation

AI-based Drug Repurposing

Model 1
Drug repurposing model based on the drug-perturbed transcriptional gene expression pattern

Model 2
Clustering model of the pathophysiological property-embodied latent space of Module 2

Model 3
Drug repurposing model based on structural and drug-like similarity

Model 4
Drug-focused information searching model

Model 5
Efficacy of STE-2502076 for Mitochondrial disease

in vitro
- MPP⁺-induced human cell model
 - Cell viability
 - Cellular ATP content
 - Mitochondrial membrane potential
 - Mitochondrial ROS content

in vivo
- Mitochondrial disease animal models
 - *C. elegans gas-1(fc21)* model
 - *D. rerio surf1⁻⁻* model
 - Life span
 - Body size
 - Neural and locomotor activities

Models of Standigm Insight™

Seed group 1: Mito Biogenesis
Seed group 2: Clinical trials for Mito D
Seed group 3: Mitochondrial MOAs

Input Information
of Drugs

~11,000
~4,000,000

of Drug Candidates

AI-generated

35

Mito Diseases

20

6

STE-2502076

Experimental Validation

Graphic knowledge database
Collaboration with Open Source Malaria (OSM)
Combination of deep learning with generative chemistry methods

• Application of Cerella to **sparse antimalarial activity data**
 – Targeting novel MoA – PfATP4

• New compound ideas were generated using the generative chemistry methods in Inspyra™
 – Prioritised for good activity profile and properties

• A **confidently** predicted compound was synthesised and tested by OSM
 – **Only confirmed active** of those proposed by four organisations

• “The Optibrium/Intelegens suggestion... was thought by the human team to be a certain inactive... yet this compound displayed good potency and is a particularly useful outcome (i.e., the “**Machine Overlords**” class)”

How does PostEra DESIGN molecules?

Hit to Lead — MedChemMoves

1. Extract 10M chemical ‘moves’ from historical assays
2. Form ontologies of move ‘types’ for interpretable references
3. Score generated molecules
How to Maximise the Impact of AI in Drug Discovery

- Algorithm
- Proof of concept
- Deployment and accessibility
- Organisational change
Questions?
Learn More:
https://www.collaborativedrug.com

Personalized Demo & Free Trial:
info@collaborativedrug.com