

Disingenuous Tool Compounds: Observations on Screening-Based Research and some Concerning Trends in the Literature

Jonathan Baell Walter+Eliza Hall Institute Melbourne

> Collaborative Drug Discovery 4th Annual General Meeting UCSF October 21, 2010

The WEHI HTS Library

- Established in 2003
- Guiding Philosophy: lead-like & optimizable:
 - MW 150-400
 - # Rings 1-4
 - HBA 8 & HBD 5
 - All analogues > 85% similar removed
- Outcome: 93,000 compounds from four different "vouched for" vendors (ChemDiv, Specs, Maybridge, Tripos)
- These vendors represent a range of the different types available chemistries – historical, combinatorial, de novo
- Hence our library is a good representation of available chemistry space

Reactives/Unsuitables removed as recommended (GSK, AMGEN or <u>both</u>)

- REMOVED: (1/2° alkyl halides), (acid halides), (alkyl sulfonates), (anhydrides), (peroxides), (isocyanates), triflates, quat. C+/Cl+/I+/P+/S
 +, (P/S halides), carbodiimide, acyl cyanides, sulfonyl cyanides, disulfides, (thiols), epoxides, aziridines, betalactones, betalactams, labile esters, (aldehydes), certain imines, phosphate/sulfate/ phosphonate/sulfonate esters, certain michael acceptors
- WEHI ADDITIONALLY REMOVED: (Ketenes), (oxoniums), carbamic acids, boronic acids, primary hydrazines/oxyamines, P–N, P–S, cyclohexadienes, activated sulfonyl (hetero)aryl halides, fluoropyridines
- Also Nitros (VERTEX)
- KEPT: ketones, esters, hydrazones, oximes, thioethers, thiocarbonyls.

And thus it was perfect......

- Reactives removed
- Assays run in the presence of detergent
 - Avoiding the "Shoichet Frequent Hitter Aggregates"
- Compounds simple and highly optimizable

.....not quite perfect?

- Random viewing of 1000 compounds pretty good.
- But cumulative HTS campaigns revealed significant numbers of recurring hits – "frequent hitters".
- Recurring hits generally implies promiscuity not developable compounds: we don't want them
- Observation: <u>classes</u> were recurring: not just individual compounds
- We wanted to establish a new library without nuisances
- We did not wish to purchase <u>classes</u> again.
- Task identify and define <u>classes</u> of problematic compounds
 - Deceptively difficult!

.....not quite perfect?

- Random viewing of 1000 compounds pretty good.
- But cumulative HTS campaigns revealed significant numbers of recurring hits – "frequent hitters".
- Recurring hits generally implies promiscuity not developable compounds: we don't want them
- Observation: <u>classes</u> were recurring: not just individual compounds
- We wanted to establish a new library without nuisances
- We did not wish to purchase <u>classes</u> again.
- Task identify and define *classes* of problematic compounds
 - Deceptively difficult!
- HOW MANY ASSAYS DOES A COMPOUND NEED TO HIT BEFORE IT IS CONSIDERED INHERENTLY NON-SPECIFIC...i.e. PROBLEMATIC?

• One of our validated hits had the following profile:

%	inhibition	at test co	ncentratio	n (10-30uN	М)	Count
Screen A	Screen B	Screen C	Screen D	Screen E	Screen F	
74	58	<50	81	67	<50	4

- i.e....A count of 4
- So our definition of a problem compound became:
 - A compound that hits 4 or more of these targets*

Approach

- We analysed data from 6 HTS campaigns
- Scrutinized all compounds that hit 4 or more assays
- Started visually grouping to define common substructures
- We observed that for a known problem moiety, the number of analogues that hit between 2-6 screens seemed quite high relative to the number that hit 0
- i.e. for the tetrahydroquinolines below:

Substructure ^a		Num	ber of	Alpha	Total	Enrichment ^b			
	6	5	4	3	Cpds				
anil_alk_ene	1	6	6	3	7	11	17	51	135%

- 1+6+6+3+7 = 23... and 23/17 = 135%
- Called this our "Enrichment" value.

A clear difference between "clean" classes and suspected "dirty" classes

Substructure	Proportion hitting 2-6 screens compared with those hitting	
	no screens	
Amide	8%	→ "Enrichment"
2-Aminopyridine	10%	
Benzothiazole	14%	
Chlorophenyl	11%	
Aromatic N	16%	
Rhodanine-like	41%	
2-Aminothiophene	43%	
tetrahydroquinolines	135%	

- "Clean" substructures contain 8-16% of compounds that hit 2-6 screens
- "Dirty" substructures contain > 40% of compounds that hit 2-6 screens.

- We continued to group into recognizable classes compounds that hit 4 or more assays
- We only kept classes when this enrichment was > 40%
- We continued until no such "dirty" compounds were left unclassified

Considerations

 Highly populated classes filtered out to allow identification of rare problematic classes

Refined filters recognize ca 8000 compounds from our library (ca 1900 count 4–6, 3600 count 2–6, 1400 count 1, 3000 clean)

Outcomes – Number of Frequent Hitter Classes

• Significant number of classes - 480

Grouping	Population size of substructure class	Number of substructure classes in grouping	Total number of compounds in grouping (duplicates)
A	>149	16	4703 (230)
В	15-149	55	2196 (52)
С	1–14	409	1186 (6)

- However, most of the problem compounds (4703 = 58%) in only a few (16) substructures (grouping A).
- We applied these filters for our 250,000 compound library expansion

So what do these most common classes look like?

Some examples

• Hydroxyphenylhydrazones

• Alkylidene rhodanines

Substructure ^a		Num	ber of	Alpha	Screen®	l assays	hit	Total	Enrichment ^b
	6	5	4	3	2	1	0	Cpds	
✓ S									
ene_rhod_A	16	41	21	26	32	39	60	235	227%
S S									
					(7	2	22	12000/
rnoa_sat_A		6	6	6	6	/	2	- 55	1200%

• Alkylidene Barbiturates

Substructure ^a	N	lumber	it	Total	Enrich-				
	6	5	4	3	2	1	0	Cpds	ment ^b
Het Het O,S HN NHO									
ene_six_het_A	10	20	21	30	69	105	228	483	66%

• Alkylidene Imidazolonelike

Substructure ^a		Num	ber of	Alpha	Screen®	assays	hit	Total	Enrichment ^b
	6	5	4	3	2	1	0	Cpds	
	6	14	24	14	20	40	64	201	1520/
	0	14		14	- 39	40	04	201	13270
S S N									
ene_five_het_B		4	4	2	14	22	44	90	55%
ene_five_het_C	3	9	7	7	7	13	39	85	85%
ene_five_het_D	4	7	8	9	13	5	0	46	na
	0			1		1		10	201/
ene_tive_net_G	U	U	2	1	1	1	5	10	80%
ene_five_net_H	0	1	0	0	2	3	0	6	na

Quinones & catechols

- often mentioned as unsuitable due to tox
- Not explicitly assay interference

• Fused THQ-cyclopentenes

Substructure ^a		Num	ber of	Alpha	hit	Total	Enrichment ^b		
	6	5	4	3	Cpds				
anil_alk_ene	1	6	6	3	7	11	17	51	135%

• Aralkyl pyrroles

Substructure ^a		Num	ber of	Alpha	Screen®	🖲 assays	s hit	Total	Enrichment ^b
	6	5	4	3	2	1	0	Cpds	
pyrrole_A	1	16	13	14	11	21	42	118	131%
pyrrole_B	4	5	9	0	0	2	3	29	600%

• 2-Amino-3-carbonyl thiophenes

Substructure ^a		Num	ber of	Alpha	Screen®	l assays	hit	Total	Enrichment ^b
	6	5	4	3	2	1	0	Cpds	
R O H N-H thiophene_amino_Aa	2	2	5	4	3	11	18	45	94%
HO HO H H H H H H H H H H H H H H H H H	0	2	2	1	5	7	23	40	43%

• Azo

- Occasionally mentioned as unsuitable due to tox
- But not specifically assay interference

Substructure ^a		Num	ber of	Alpha	Total	Enrichment ^b			
	6	5	4	3	Cpds				
R' N=N-R"									
azo_A	29	30	33	43	24	55	110	324	145%

• 3-Cyano-2-pyridones

Substructure ^a		Num	ber of	Alpha	Screen®	® assays	s hit	Total	Enrichment ^b
	6	5	4	3	2	1	0	Cpds	
cyano_pyridone_A	1	3	3	4	6	16	23	54	65%
cyano_pyridone_B	0	1	2	2	7	4	11	27	109%

• Benzofurazans (2,1,3-benzothiadiazoles and oxadiazoles)

Substructure ^a		Num	ber of	Alpha	Total	Enrichment ^b			
	6	5	4	3	2	1	0	Cpds	
,s									
diazox_sulfon_A	1	4	2	2	4	6	17	36	78%

• Phenolic Mannich Bases

Substructure ^a		Num	ber of	Alpha	Total	Enrichment ^b			
	6	6 5 4 3 2 1 0							
N OH									
mannich_A	2	4	13	15	59	57	146	296	64%

Are we happy to omit these? Rhodanines as an example

• Would you work on this knowing this history?...

Substructure ^a		Num	ber of	Alpha	Total	Enrichment ^b			
	6	5	4	3	2	1	0	Cpds	
0									
↓ ►s									
S.									
ene_rhod_A	16	41	21	26	32	39	60	235	227%
0,									
⊢ ^H √ ≻s									
s'									
			_			_			1.0000/
rhod_sat_A	0	6	6	6	6	7	2	33	1200%

- Activity non-specific
- Remote chance that such hits represent a good starting point

- Literature precedent for reactivity towards nucleophiles for many of these frequent hitters
- Assay interference through protein reactivity highly plausible

Interference - more than a single mechanism?

• Systems also often with chromophores (color/fluorescence) and chelators

- If a class is coloured, redox-active, chelating and protein reactive
 - Assay interference may give a false readout at almost every level: <u>Pan-Assay Interference Compounds</u> (PAINS)
 - Not just our assays everyone's!

- If a class is coloured, redox-active, chelating and protein reactive
 - Assay interference may give a false readout at almost every level: <u>Pan-Assay</u> <u>Interference Compounds</u> (PAINS)
 - Not just our assays everyone's!
 - Such compounds are common in screening and vendor libraries
 - They will appear as hits in other labs

- If a class is coloured, redox-active, chelating and protein reactive
 - Assay interference may give a false readout at almost every level: <u>Pan-Assay</u> <u>Interference Compounds</u> (PAINS)
 - Not just our assays everyone's!
- Such compounds are common in screening and vendor libraries
 - They will appear as hits in other labs
- Such compounds may appear to be selective and yield to early SAR

- If a class is coloured, redox-active, chelating and protein reactive
 - Assay interference may give a false readout at almost every level: <u>Pan-Assay</u> <u>Interference Compounds</u> (PAINS)
 - Not just our assays everyone's!
- Such compounds are common in screening and vendor libraries
 - They will appear as hits in other labs
- Such compounds may appear to be selective and yield to early SAR
- Screening-based drug discovery a recent expansion to academic laboratories
 - Not as experienced as the pharmaceutical industry
 - Pressure to publish

- If a class is coloured, redox-active, chelating and protein reactive
 - Assay interference may give a false readout at almost every level: <u>Pan-Assay</u> <u>Interference Compounds</u> (PAINS)
 - Not just our assays everyone's!
- Such compounds are common in screening and vendor libraries
 - They will appear as hits in other labs
- Such compounds may appear to be selective and yield to early SAR
- Screening-based drug discovery a recent expansion to academic laboratories
 - Not as experienced as the pharmaceutical industry
 - Pressure to publish
- Is all the above reflected in the literature?
 - i.e do these compounds appear in academic publications and portrayed as valid hits/probes/medchem starting points when they are not?

YES! Rhodanines as an example

• Screening hits against:

- Anthrax lethal factor
- Glycosyltransferase MurG
- SARS coronavirus
- PRL-3
- glycogen synthase kinase-3b
- HIV-1 integrase
- extracellular signal-regulated kinase 2
- tau aggregation
- botulinum neurotoxin type A
- *Plasmodium falciparum* enoyl-acyl carrier protein reductase
- leucocyte migration (by stabilizing activated $\alpha_{\rm M}\beta_2$ integrin),
- hepatitis C NS5b RNA
- TNF-α

- UDP-galactopyranose mutase
- Lck
- VHR phosphatase
- Formylpeptide receptor (FPR)
- Protein tyrosine phosphatase (PTN)-1B
- Yersinia tyrosine phosphatase YopH
- Retinoid X receptor RXRa
- Yersinia protein kinase YpkA
- DNA adenine methyltransferase DAM
- RNA polymerase
- cholesterol accumulation
- peptide deformylase
- human apurinic/apyrimidinic endonuclease I
- Heliobacter pylori shikimate kinase

Precious Research Dollars Wasted on Patents

Scifinder Search: 58,739 commercially available!! 7919 compounds associated with biological study. Reported in 588 publications, 279 of which are patents, largely deriving from academia.

SciFinder Search: 8,172 commercially available. 3,294 compounds associated with biological study. Reported in 831 publications, 689 of which are patents, apparently largely deriving from pharma.

* = blocked

2009 74	2009 76
2008 55	2008 75
2007 51	2007 86
2006 58	2006 71
2005 37	2005 85
2004 47	2004 71
2003 45	2003 69
2002 30	2002 48
2001 20	2001 30
2000 18	2000 34

The cost of PAINS

- Other PAINS also prevalent in literature
- Hundreds (and hundreds) of publications
 - Precious research dollars
- Hundreds (and hundreds) of patents
 - \$\$\$\$\$\$
- Take up by others
 - Tool compounds
 - PK
 - Student projects
 - Drug development
 - Validation *in silico* algorithms
 - And MORE PUBLICATIONS AND PATENTS!
- We wish to alert the academic drug discovery community to these nuisance compounds*

What can we collectively do?

• BECOME FAMILIAR WITH PAINS

- As editors
- As reviewers
- As authors
- As researchers

One of innumerate recent examples

C646 K₁=400nM

- C646 reported as selective p300 inhibitor apparently non-reactive
 - Received significant press coverage.
- Likely to be cited as yet another in silico docking success
- Likely to be taken up by others as useful p300 probe

One of innumerate recent examples

C646 K_i=400nM

• But is a readily recognizable PAINS - will turn out to be non-specific

Substructure ^a	Number of AlphaScreen® assays hit							Total	Enrichment ^b
	6	5	4	3	2	1	0	Cpds	
ene_five_het_A	6	14	24	14	39	40	64	201	152%

What else can we do? -not bury structures in SI

• LJ-001 was recently reported in a high profile journal as a broad-spectrum antiviral targeting entry of enveloped viruses (irreversible) and received extensive press coverage.

PNAS 107 (2010) 3157-3162

- This compound will turn out to be non-specific
- LJ-001 buried in SI harder to assess by others
 - A journal responsibility?

What else can we do? - be mindful of overstatements

Chem. Biol. 16 (2009) 1158-1168

- In silico screening hit SMIFH2 that "may be a useful drug to elucidate formin-dependent processes in a wide range of organisms and cell types".
- But this is a PAIN that will turn out to be non-specific.
- These examples all arise from academic labs......

- Drug companies may have PAINS in their HTS libraries
- May not recognise until substantial follow up reveals these PAINS
- May publish results
 - With no suggestion of problems
 - Even though there are (reactivity and/or flat SAR)
 - Dropped programs
 - "The present work demonstrated a valuable strategy for lead seeking by coupling *in silico* virtual screening with prudent follow-up experimental studies" (Sanofi-Aventis)
 - "Useful JAK3 pharmacological probes" (AstraZeneca)
- Difficult for academics to judge

Take home messages

- Publication flurries around misleading compounds are associated with academic groups new to HTS.
- These PAINS are wasting vast amounts of time and money in publications and patents
 - AND ON THE INCREASE
- Companies are not immune to currently working on PAINS.
- PAINS filters* will help to identify these non-specific compounds.

Take home messages

- Publication flurries around misleading compounds are associated with academic groups new to HTS.
- These PAINS are wasting vast amounts of time and money in publications and patents
 - AND ON THE INCREASE
- Companies are not immune to currently working on PAINS.
- PAINS filters* will help to identify these non-specific compounds.
- All of us (researchers, editors, reviewers, authors) could be more mindful of how we report, assess, and publish PAINS-like screening hits – or even any screening hit.
- By sharing and being open about "bad hits", we can all identify new PAINS as they come to light and learn more about existing ones and why, when and how they are problematic
- PHARMA please be open and publish your experiences with nuisance compounds
- And you may benefit from a richer field of licensing candidates

*Baell & Holloway, J. Med. Chem. 53 (2010) 2719-2740

Built using the harshest filters.....

..to give 112 K of the purest compounds.....as shown in next few slides

Vendor Library Processing: an example

•Attrition Rate Typically High (>90%)

•Here 98.5%

Cmpds > 90% similar

to existing

J. Baell

•This process was repeated for > 10 other vendors to give us our 112K Library

6K

10K

Library Name (Date)	Broad Selection Principles	Problem Compounds Filter?	Other
Inaugural WEHI 93 K (2003)	Lead-like*	Ν	Four Vendors
WEHI Legacy 15K (2007)	Lead-like*	Y	One Vendor
CTx 136K (2007)	Lead-like*	Y	Two Vendors
CTx-Dundee 17K (2007)	Clustering	Ν	Twenty Vendors
WECC 112K (2010)	Lead-like*	Y	Ten Vendors

* Broad selection principles

- Mw 150-450 • Chiral_{max} 3 • Rings 1-4 • HBD_{max} 5 • cLogP_{max} 5 • Rot. Bonds_{max} 10
 - HBA 1-8

Other Filters Applied:

• Inappropriate Functional Groups.

• Analogs more than 85% similar

J. Baell

The New WECC 112K Library (2010)

Library Name (Date)	Broad Selection Principles	Problem Compounds Filter?	Other
Inaugural WEHI 93 K (2003)	Lead-like*	Ν	Four Vendors
WEHI Legacy 15K (2007)	Lead-like*	Y	One Vendor
CTx 136K (2007)	Lead-like*	Y	Two Vendors
CTx-Dundee 17K (2007)	Clustering	Ν	Twenty
WECC 112K (2010)	Lead-like*	Y	Ten Vendors
Broad selection principles			

• Chiral_{max} 3

• HBD_{max} 5

• HBA 1-8

- Mw 150-450
- Rings 1-4

J. Baell

• cLogP_{max} 5 • Rot. Bonds_{max} 10

Other Filters Applied:

• Inappropriate Functional Groups.

• Analogs more than 85% similar

Mw Avg = 328

Nring Avg = 2.9

Chiral centres Avg = 0.3

H-Donor Avg = 1.4

Parameters of the new library

H-Acceptor Avg = 3.3

Aromatic rings Avg = 2.3

cLogP

Avg = 3.0

PSA Avg = 59

50

The Wyeth Fsp³: Fraction sp3 carbons of total carbons

Lovering et al found that the more advanced the compound, the higher the Fsp³ value

Figure 6. Fsp³ as a function of melting point. ***P* value < 0.001.

Figure 5. Fsp³ as a function of log S. *P value < 0.01. **P value < 0.001.

Journal of Medicinal Chemistry, 2009, Vol. 52, No. 21, p 6572

Figure 3. Mean Fsp^3 for compounds in different stages of development. ***P* value < 0.001.

- The new problematic compound filter applied • Removes extensive numbers of compounds
- Greatly expanded functional group filter
 - Weirdness
 Also many fused rings, simple flat bicyclics etc
- Drawn from multiple vendors
 - •Chemotype variety

• Together with other new libraries there is predominant coverage of available lead-like chemistry (by our criteria)

- The new problematic compound filter applied • Removes extensive numbers of compounds
- Greatly expanded functional group filter
 - Weirdness
 Also many fused rings, simple flat bicyclics etc
- Drawn from multiple vendors
 - •Chemotype variety

• Together with other new libraries there is predominant coverage of available lead-like chemistry (by our criteria)

The new library:

- Lead-like physicochemical properties
- Devoid of Large Numbers of Similar (>85%) Analogues
- 96% of cpds are less than 90% similar to Inaugural WEHI 93K Library
- 86% of cpds are less than 85% similar to Inaugural WEHI 93K Library

World's best publicly-accessible screening library?

-All 370,000 compounds accessible for screening

- 270,000 processed via the PAINS filters

Acknowledgements

- Georgina Holloway
- & other WEHI Medicinal Chemists
- WEHI HTS Group

Backups

Assay technology

- Our these selected screens use AlphaScreen® technology
- Bead format
- Protein A on Donor Bead binds to ligand B on Acceptor Bead, bringing the bead close together
- Donor Bead is excited with light, releasing singlet oxygen which before it has time to decompose - excites nearby Acceptor bead which emits a signal at 520-620 nm
- An inhibitor disrupts the protein-ligand interaction and the Acceptor bead becomes distant from the Donor bead
 - singlet oxygen degrades before reaching the acceptor bead.
 - LOSS OF SIGNAL

The chemistry behind the assay

Investigating Chromophore and Singlet Oxygen Interference

Compound	IC 50
Quercetin (400 nm - Yellow)	> 100 uM
Tartrazine (425 nm - Yellow)	> 100 uM
Fluorescein (496 nm - Yellow)	> 100 uM
Cytochrome C (550 nm - Orange-pink)	> 100 uM
Sulforhodamine 101 (576 nm - Red)	8 ± 0.2 uM
Trypan Blue (607 nm)	3 ± 0.5 uM
Malachite Green (617 nm)	3 ± 0.5 uM
Chicago Sky Blue (618 nm)	$6 \pm 1 \text{ uM}$
DABCO	$85 \pm 5 \text{ uM}$
LNJ LNJ	
	1

- Red, green and blue compounds interfere with the AlphaScreen®
 - Some relevance to our frequent hitters?
- Reactivity with singlet oxygen (DABCO) appears to be less of an issue

Rhodanines as an example – a closer look

• Crystal Complexes:

- Covalent and irreversible light-induced reaction with proteins (TNF- α - Voss et al BMCL 13 (2003) 533, Carter et al, PNAS 98 (2001) 11879)
- Covalent but reversible bond formation with proteins (Hepatitis C virus RNA-dependent RNA polymerases - Powers et al, JMC 49 (2006) 1034; Lee et al JMB 357 (2006) 1051)
- Chelation with protein active site zinc (anthrax lethal factor - Forino et al. Proc. Natl Acad. Sci USA 2005, 102, 9499-9504)

