A novel drug with a known mechanism that is superbly selective against a single target: Is this a contributor to reduced drug discovery productivity?

> Christopher A. Lipinski Scientific Advisor, Melior Discovery clipinski@meliordiscovery.com

Outline

• How a medicinal chemist looks at drugs

annotation

- Beautiful biology ruined by bad chemistry
- Target tractability can change
 - protein protein interactions as an example
- Rules and filters: why "sharing" is important
 - thiol traps and FDA drugs
 - thiol traps and the Lopac1280 screening library
- Drug repurposing: why "mine" drugs?
 - MLR-1023 as an example
- Enhancing biology chemistry collaboration

Medicinal chemistry annotation

- Start with the structure of a hit. Is it known?
- What do you see in a substructure search?
- Try to understand the chemistry. How were the compounds made and how might they react?
- What is the pattern in the literature for compounds at about 85% similarity
- Look at 10 20 compounds and references.
- This type of annotation is almost impossible to do using public domain tools.

Annotation on 64 NIH tools and probes

Oprea et al. Nature Chemical Biology 2009, 5(7), 441-447.

Red is high dubiosity (low confidence), blue is low dubiosity (high confidence)

CDD Community Group Meeting, SFO, October 1, 2009

How do we judge biology value?

- New biology appears in the literature
- Initially the biology looks interesting
- Chemistry in the biology has problems
- How to judge value if the chemistry tools illustrating the biology have potential flaws

Biology enthusiasm, but chemistry questions

Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade

Joel M. Hyman^{a, 1}, Ari J. Firestone^{a, 1}, Vivi M. Heine^b, Yun Zhao^{c,d}, Cory A. Ocasio^a, Kyuho Han^a, Mark Sun^a, Paul G. Rack^a, Surajit Sinha^{a, 2}, Jason J. Wu^e, David E. Solow-Cordero^e, Jin Jiang^c, David H. Rowitch^b, and James K. Chen^{a, 3}

^aDepartment of Chemical and Systems Biology and ^aStanford High-Throughput Bioscience Center, Stanford University School of Medicine, Stanford, CA 94305; ^bInstitute for Regenerative Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143; ^cDepartment of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and ^dLaboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Communicated by Matthew P. Scott, Stanford University School of Medicine, Stanford, CA, June 29, 2009 (received for review January 9, 2009)

Hedgehog screening - my comment

4. Chris on August 12, 2009 2:18 AM writes...

There is a common theme to the four "actives" identified in this paper. They are all commercially available compounds with a CAS registry number and (almost) no literature references. In each case there are commercially available analogs at high similarity again with CAS registry numbers and again no references. I frequently see this pattern in "actives" and it makes me deeply suspicious. What do you think is the probability that a vendor would make a totally novel series just to hit in my new screen? If I were suspicious I might think that the origin of each series was a compound with a flaw that hit enough screens to warrant preparing a flawed analog series. I particularly do not like HPI-4 with a push pull polarized double bond crying out "I am a Michael acceptor please interact with me".

"actives" all commercially available compounds no literature references suspicious

A profile to avoid

- The structure of a hit appears in CAS SciFinder
- It is a commercial compound with a CAS Registry Number but no references
- There are multiple compounds at 85% or better similarity
- All the similar compounds are commercially available with no literature references
- WARNING FLAG
- This could be a problematic series that proliferates because it is a flawed HTS hit series

Hedgehog screening – thiol trap filters

CHEMISTRY	NAME	Alarm	smartsfilter_matches
599150-20-6	HPI-1	failed	C=CC(=O)O[c,C] () C=CC(=O)[c,C] () Oc1[a;R1][a;R1]a[a;R1][a;R1]1 ()
868881-36-1	HPI-2	passed	
796887-98-4	HPI-3	failed	[N;!\$([N+]);!\$(NC=[O,N])]c1[a;R1][a; R1]a[a;R1][a;R1]1 ()
302803-72-1	HPI-4	failed	C=CC(=O)[c,C] ()

Chemical novelty and discovery success

- Biologically active compounds are not evenly distributed in chemical space
- Composition of matter patents drive chemistry toward greater novelty and away from precedented chemistry space
- Greater chemistry novelty tracks with decreasing success (greater attrition)
- Modest amount of literature background around an HTS hit is a positive

Not all targets are equal in screening

Size of colored graphic = screening success at Pharmacopeia

Reproduced with permission from "Targeting signal transduction with large combinatorial collections", D. S. Auld, D. Diller, K. Ho, Drug Discovery Today, 2002, 7(24) 1206-13.

Targets, ligands and the rule of 5

- Beautiful targets and very do-able
 - -GPCR's aminergic
 - -phosphodiesterases
 - -kinases
- Difficult targets but still do-able
 - -GPCR's peptidergic
 - proteases
- Hopeless (or nearly so) targets
 - protein protein interactions
 - -phosphatases

Target tractability can change

- Protein-protein interactions

 hopeless from an HTS screening viewpoint

 Scientific advances

 fragment screening
 - -SAR by nmr and x-ray
 - -Bcl-2 family success from Abbott

Lepourcelet, Maina; Chen, Ying-Nan P.; **France, Dennis** S.; Wang, Huisheng; Crews, Phillip; Petersen, Frank; Bruseo, Charles; Wood, Alexander W.; Shivdasani, Ramesh A. Small-molecule antagonists of the oncogenic Tcf/ β -catenin protein complex. Cancer Cell (2004), 5(1), 91-102.

Protein protein ligand ABT-737

Bruncko, Milan; Oost, Thorsten K.; Belli, Barbara A.; Ding, Hong; Joseph, Mary K.; Kunzer, Aaron; Martineau, Darlene; McClellan, William J.; Mitten, Michael; Ng, Shi-Chung; Nimmer, Paul M.; Oltersdorf, Tilman; Park, Cheol-Min; Petros, Andrew M.; Shoemaker, Alexander R.; Song, Xiaohong; Wang, Xilu; Wendt, Michael D.; Zhang, Haichao; Fesik, Stephen W.; Rosenberg, Saul H.; Elmore, Steven W. **Studies Leading to Potent, Dual Inhibitors of Bcl-2 and Bcl-xL.** Journal of Medicinal Chemistry (2007), 50(4), 641-662.

BCL-2 inhibitor compound in phase II

Industry filters vary a lot

• Pfizer –lint 2001

—likely the strictest filters in big pharma

• Abbott – Alarm NMR - 2005

—possible screening problems due to thiol traps and Redox problems

—a continuum rather than binary filter

- BMS -2006
- Glaxo -2001

-compounds to avoid - very loose

Cysteine is the most nucleophilic AA

Nucleophilicity increases as you descend a column

Nucleophilicity increases as you move to the left in a row

First principles suggest that thiol traps are likely one of the most troublesome chemistry screening problems against protein targets

Abbott Alarm NMR alerts

Table S2. Structu	ral Desc	criptors	s Used 7	To Predict Thiol Reactivity
Smile	F (%) ^a	TRI ^b	#tested	Smart
0=C1C=CC(=0)C=C1	100	0.30	16	O=C1C=CC(=O)C=C1
c1oc(=S)sc1	85	0.30	21	c1oc(=[0,S])sc1
0=C10CCS1	85	0.30	20	O=[#6]1[0,O][#6]@[#6][s,S]1
SC#N	66	0.30	19	SC#N
OH]c1ccc(O)cc1	60	0.30	35	[OH]a1aaa(O)aa1
0=C1CCC(=0)C=C1	60	0.30	10	O=C1CCC(=O)C=C1
0=C1C=CCC=C1Br	55	0.30	14	O=C1C=CCC=C1[F,CI,Br,I]
C=CS	50	0.30	12	C=[C;R0]S
C=CCI	48	0.30	57	C=C[CI,Br,I]
c1cccc2nonc12	48	0.30	27	c1cccc2nonc12
Oc1ccc2nc(F)cnc2c1	47	0.30	20	[N,OH]c1ccc2nc([c,F])c[c,n]c2c1
OH]c1ccc(N)cc1	44	0.30	60	[OH]a1aaa([n,N;R0])aa1
Nc1cccs1	44	0.30	30	[N;R0]a1caas1
Sc1ccccc1N	42	0.30	35	[s,S;R0;!\$(S(=O)(=O)N)]a1a([n,N;R0])aaaa1
C(=S)S	42	0.30	18	[#6]C(=S)S
SC1=NCCS1	38	0.30	40	SC1=NCC[N,S]1
n1ncnc2C(=O)NC(=O)Nc	37	0.30	16	n1ncnc2c(=O)nc(=O)nc12
c1nsnc1	34	0.30	60	c1n[o,s]nc1
[SH]	34	0.30	37	[#6;!\$(C=C);!\$(CO);!\$(CN)][SH]
CBr	33	0.30	62	[C;!\$(C=C)][Br,1]
C1=CN=NC(=O)C1I	33	0.30	12	c1cnnc(=O)c1[Cl,Br,I]
NC=S	31	0.30	74	[n,N][c,C;R1]=S
C1CSCN1	30	0.30	81	C1CSCN1
Nc1nccs1	30	0.30	51	Nc1nccs1

Alerts detect from 100% to 3% of compounds causing thiol perturbation problems.

Up to the user to set an acceptable threshold

Huth J. R. et al. J. Am. Chem. Soc., 2005 127, 217-224

Alarm NMR fail on 740 FDA Drugs

CHEMISTRY	smartsfilter_matches	smiles	fail(#)	F (%)
ACEBUTOLOL	Oc1[a;R1][a;R1]a[a;R1][a;R1]1 ()	c1ccccc10	46	10
Acetohexamide	S(=O)(=O)N ()	S(=O)(=O)N	44	8
Azithromycin	[o,O;R1][c,C]=O ()	O=C1CCCCO1	32	17
6alpha-Methylprednisolone	C=CC(=O)[c,C] ()	C=CC(=O)C	30	42
5-(N,N-dimethyl)-Amiloride	[N;!\$([N+]);!\$(NC=[O,N])]c1[a;R1][a;R1]a[a R1][a;R1]1 ()	a; c1ccccc1N	29	10
Acetophenazine	[c,C;!\$(C=O);!\$(C=N);!\$(C=S)][S;!\$(S=O)][c ;!\$(C=O);!\$(C=N);!\$(C=S)] ()	,C CSC	26	23
(-)-Epinephrine	[OH]a1aaaaa1O ()	[OH]c1ccccc1O	21	22
Amlodipine	C=CC(=O)O[c,C] ()	C=CC(=O)OC	14	20
Ampicillin	C1CSCN1 ()	C1CSCN1	14	30
Almotriptan	csc ()	c1sccc1	14	19
AZTREONAM	Nc1nccs1 ()	Nc1nccs1	14	30
ANISINDIONE	c1ccccc1[C;R1](=O)[c,C] ()	c1ccc2C(=O)CCCc2c1	13	23
ACETYLCYSTEINE	[#6;!\$(C=C);!\$(CO);!\$(CN)][SH] ()	[SH]	10	34

Adjusting Alarm NMR alerts

- FDA approved 740 drug data set
 -F(%) = 100 is 100% of the time a thiol trap
 -F(%) = 30 is 30% of the time a thiol trap
- Most FDA failures are where F(%) < 30
- Suggests using alerts where F(%) > 30
 —ie. focus mostly on the really bad thiol traps
- Filter out when a functionality fails both a thiol trap and a compound quality filter

Screening starting point - LOPAC¹²⁸⁰ library of pharmacological actives

Thiol reactivity is very prevalent

- Desalt Lopac1280 in ACS/Labs Chemfolder
- Export cleaned up compounds as an sdf file
- Run Abbott Alarm NMR and Pfizer lint alerts
- Alarm NMR Pfizer lint Numbers

Fail	Fail	363 (28%)
Fail	Pass	356 (28%)
Pass	Fail	202 (16%)
Pass	Pass	359 (28%)

Worst Alarm NMR moieties

Drug Repurposing Observations

- New uses for an old drug:
 —success rate is 10 90%
 —70 90% is original mechanism
- Smaller drugs are better

 properties change throughout clinical
 MWT 347 mean for FDA approved drugs
 merit in "back to the future" approach

Drug repurposing examples

- Nelfinavir for cancer
- Tamoxifen for bipolar disorder
- Gleevec for rheumatoid arthritis
- Pentylenetetrazole for downs syndrome
- Minocycline for retinopathy
- Thioridazine for tuberculosis
- Astemizole for malaria
- Lipitor for alzheimers
- Lipitor for influenza mortality
- Metformin for cancer

Phenotypic Screens and Mechanism

- FDA doesn't require mechanism.
- Drug company attitude change —eg. Sanofi-Aventis, Eli Lilly
- Phenotypic screen gives an active but without mechanism.
- Progress on deciphering mechanism —antibacterials and antivirals
- Phenotypic screen for target validation

Phenotypic screening leverage

- Phenotypic screening
 - enhanced target opportunity space
- Melior runs pan therapeutic in-vivo screens
 - finds activity in type II diabetes model
 - finds an in-vivo active in a clinically tested drug
 - literature unprecedented mechanism
- Wildly lucky or predictable in drug repositioning?
 - 97 mechanisms for type II diabetes in Prous' Integrity

MLR-1023 aka Tolimidone

Records Retrie	Records Retrieved 1 in Drugs & Biologics			Options -		
Drugs & Biologics Search Results 1						
Query > Drug Name = MLR-1023						
Entry Number	329565 UPDATES	Chemical Structure		STRUCTURE FEATURES		
CAS Registry No.	041964-07-2		\sim			
Molecular Formula	C11H10N2O2					
Molecular Weight	202.2094		\checkmark	N O		
Highest Phase	IND Filed		Tolimidope			
Under Active Development			roimidone			
Chemical Name/Descr	iption					
5-(3-Methylphenoxy)	oyrimidin-2(1H)-one					
Code Name		Generic Name	Brand	Name		
CP-26154 MLR-1023		Tolimidone				
Therapeutic Group		Cellular / Molecular Mechanism	Biolog	jical / Chemical Group		
Antiulcer Drugs Type 2 Diabetes, Age	nts for					
Organization						
<u>Melior Discovery</u> Pfizer (Originator)						

_

Melior MLR-1023

- Antiulcer compound phase 3 from 1970's Pfizer. New activity from phenotypic in-vivo mouse screens
- IND filed by Melior Discovery for type 2 diabetes/metabolic syndrome. Lyn kinase activator with EC-50 63 nm. MWT 202, LE 0.48 kcal/heavy atom
- How many other unrecognized kinase activators are there?

Why does repurposing work?

- Negative viewpoint
- 85-90% novel targets fail
- Network bypasses the block
- 10% predictivity in clinical
- Unexpected clinical effects
- Pleiotropic effects
- Useful activity seen late
- Too late to be clinically optimized

- Positive viewpoint
- Phenotypic screening
- In-vivo screening
- Pathway screening
- Screen the 1-2% that become early clinical drugs
- Screen known drugs
- 30 90% success rate
- An active drug almost never has just a single activity

Conclusion

- We need to "share" information
- We need to "mine" existing drugs
- We need mechanisms to enhance biology chemistry "collaboration"
- We need diversity in our screening